The one-arm exponent for mean-field long-range percolation

Autor: Tim Hulshof
Přispěvatelé: Stochastic Operations Research, Probability
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Electronic Journal of Probability, 20. Institute of Mathematical Statistics
Electron. J. Probab.
ISSN: 1083-6489
DOI: 10.1214/ejp.v20-3935
Popis: Consider a long-range percolation model on $\mathbb{Z}^d$ where the probability that an edge $\{x,y\} \in \mathbb{Z}^d \times \mathbb{Z}^d$ is open is proportional to $\|x-y\|_2^{-d-\alpha}$ for some $\alpha >0$ and where $d > 3 \min\{2,\alpha\}$. We prove that in this case the one-arm exponent equals $ \min\{4,\alpha\}/2$. We also prove that the maximal displacement for critical branching random walk scales with the same exponent. This establishes that both models undergo a phase transition in the parameter $\alpha$ when $\alpha =4$.
Comment: 28 pages, 1 figure, 1 appendix
Databáze: OpenAIRE