Linearisation Techniques and the Dual Algorithm for a Class of Mixed Singular/Continuous Control Problems in Reinsurance. Part I: Theoretical Aspects

Autor: Dan GOREAC, Juan LI, Boxiang XU
Přispěvatelé: School of Mathematics and Statistics, Shandong University, Weihai, Weihai 264209, PR China, Laboratoire Analyse et Mathématiques Appliquées (LAMA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University,Qingdao 266237, P. R. China
Rok vydání: 2022
Předmět:
Zdroj: Applied Mathematics and Computation
Applied Mathematics and Computation, Elsevier, 2022, 431, pp.127321. ⟨10.1016/j.amc.2022.127321⟩
ISSN: 0096-3003
DOI: 10.48550/arxiv.2206.10224
Popis: International audience; This paper focuses on linearisation techniques for a class of mixed singular/continuous control problems and ensuing algorithms. The motivation comes from (re)insurance problems with reserve-dependent premiums with Cramér-Lundberg claims, by allowing singular dividend payments and capital injections. Using variational techniques and embedding the trajectories in an appropriate family of occupation measures, we provide the linearisation of such problems in which the continuous control is given by reinsurance policies and the singular one by dividends and capital injections. The linearisation translates into a dual dynamic programming (DDP) algorithm. An important part of the paper is dedicated to structural considerations allowing reasonable implementation. We also hint connections to methods relying on moment sum of squares and LMI (linear matrix inequality)-relaxations to approximate the optimal candidates.
Databáze: OpenAIRE