Stable community cores in complex networks

Autor: Ivan Junier, Massoud Seifi, Jean-Baptiste Rouquier, Jean-Loup Guillaume, Svilen Iskrov
Přispěvatelé: ComplexNetworks, Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: 3rd Workshop on Complex Networks (CompleNet 2012)
3rd Workshop on Complex Networks (CompleNet 2012), Mar 2012, Melbourne, Florida, United States. pp.87-98, ⟨10.1007/978-3-642-30287-9_10⟩
Complex Networks ISBN: 9783642302862
CompleNet
DOI: 10.1007/978-3-642-30287-9_10⟩
Popis: International audience; Complex networks are generally composed of dense sub-networks called communities. Many algorithms have been proposed to automatically detect such communities. However, they are often unstable and behave nondeterministically. We propose here to use this non-determinism in order to compute groups of nodes on which community detection algorithms agree most of the time.We show that these groups of nodes, called community cores, are more similar to Ground Truth than communities in real and artificial networks. Furthermore, we show that in contrary to the classical approaches, we can reveal the absence of community structure in random graphs.
Databáze: OpenAIRE