Musical Gesture Recognition Using Machine Learning and Audio Descriptors
Autor: | Jean Bresson, Paul Best, Diemo Schwarz |
---|---|
Přispěvatelé: | Représentations musicales (Repmus), Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Interaction Son Musique Mouvement |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
[SHS.MUSIQ]Humanities and Social Sciences/Musicology and performing arts
Computer science business.industry ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION [INFO.INFO-MM]Computer Science [cs]/Multimedia [cs.MM] hidden Markov chains 02 engineering and technology Machine learning computer.software_genre audio descriptors [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ComputingMethodologies_PATTERNRECOGNITION machine learning Match moving [INFO.INFO-SD]Computer Science [cs]/Sound [cs.SD] 0202 electrical engineering electronic engineering information engineering gesture 020201 artificial intelligence & image processing Mel-frequency cepstrum Artificial intelligence Hidden Markov model business Musical gesture computer Gesture |
Zdroj: | International Conference on Content-Based Multimedia Indexing (CBMI'18) International Conference on Content-Based Multimedia Indexing (CBMI'18), 2018, La Rochelle, France CBMI |
Popis: | International audience; We report preliminary results of an ongoing project on automatic recognition and classification of musical "gestures" from audio extracts. We use a machine learning tool designed for motion tracking and recognition, applied to labeled vectors of audio descriptors in order to recognize hypothetical gestures formed by these descriptors. A hypothesis is that the classes detected in audio descriptors can be used to identify higher-level/abstract musical structures which might not be described easily using standard/symbolic representations. |
Databáze: | OpenAIRE |
Externí odkaz: |