Forms over fields and Witt's lemma
Autor: | Nathalie Wahl, David Sprehn |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Lemma (mathematics)
Pure mathematics Transitive relation math.AT General Mathematics 010102 general mathematics K-Theory and Homology (math.KT) 16. Peace & justice 01 natural sciences Linear subspace Hermitian matrix math.KT Mathematics - K-Theory and Homology FOS: Mathematics Algebraic Topology (math.AT) Mathematics - Algebraic Topology 0101 mathematics Mathematics Vector space |
Zdroj: | Sprehn, D & Wahl, N 2020, ' Forms over fields and Witt's lemma ', Mathematica Scandinavica, vol. 126, no. 3, pp. 401-423 . https://doi.org/10.7146/math.scand.a-120488 MATHEMATICA SCANDINAVICA |
DOI: | 10.7146/math.scand.a-120488 |
Popis: | We give an overview of the general framework of forms of Bak, Tits and Wall, when restricting to vector spaces over fields, and describe its relationship to the classical notions of Hermitian, alternating and quadratic forms. We then prove a version of Witt's lemma in this context, showing in particular that the action of the group of isometries of a space equipped with a form is transitive on isometric subspaces. Final version, to appear in Math. Scand |
Databáze: | OpenAIRE |
Externí odkaz: |