A Min-Max Based Hyperparameter Estimation For Domain-Adapted Segmentation Of Amoeboid Cells

Autor: Elisabeth Labruyère, Rituparna Sarkar, Jean-Christophe Olivo-Marin, Suvadip Mukherjee
Přispěvatelé: Analyse d'images biologiques - Biological Image Analysis (BIA), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CONV-0005,INCEPTION,Institut Convergences pour l'étude de l'Emergence des Pathologies au Travers des Individus et des populatiONs(2016)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Apr 2021, Nice, France. pp.1869-1872, ⟨10.1109/ISBI48211.2021.9433864⟩
ISBI
DOI: 10.1109/ISBI48211.2021.9433864⟩
Popis: Domain adaption is a tool to fit models trained on a source dataset to characteristically different target samples. During training, such methods typically seek to minimize the segmentation loss, in conjunction with a penalty function for domain misalignment. State-of-the-art solutions are sensitive to heuristically chosen hyper-parameters that dictate the proportion of the two cost functions. We address this issue by introducing a novel strategy for hyper-parameter estimation via min-max optimization of the deep neural network’s loss function. Our solution provides an analytical expression for the model hyper-parameters, which are iteratively estimated during training. Experimental evaluation on both synthetic data and microscopy images of ameoboid cells Entamoeba histolytica attest to the effectiveness of our solution for deep domain-adapted segmentation in bioimaging.
Databáze: OpenAIRE