Convergence of finite difference schemes to the Aleksandrov solution of the Monge-Ampere equation
Autor: | Romeo Awi, Gerard Awanou |
---|---|
Rok vydání: | 2015 |
Předmět: |
Partial differential equation
Mathematics::Complex Variables Applied Mathematics Mathematical analysis Finite difference Mathematics::General Topology Monge–Ampère equation 010103 numerical & computational mathematics Numerical Analysis (math.NA) 16. Peace & justice Equicontinuity 01 natural sciences Stability (probability) Convexity 010101 applied mathematics Bounded function Convergence (routing) FOS: Mathematics Mathematics - Numerical Analysis 0101 mathematics Mathematics |
DOI: | 10.48550/arxiv.1507.08490 |
Popis: | We present a technique for proving convergence to the Aleksandrov solution of the Monge-Ampere equation of a stable and consistent finite difference scheme. We also require a notion of discrete convexity with a stability property and a local equicontinuity property for bounded sequences. |
Databáze: | OpenAIRE |
Externí odkaz: |