New method for removal of spectral interferences for beryllium assay using inductively coupled plasma atomic emission spectrometry

Autor: Linda D. Youmans, Maureen A. Bernard, Sherrod L. Maxwell, Matthew R. Nelson
Rok vydání: 2008
Předmět:
Zdroj: Talanta. 76(2)
ISSN: 1873-3573
Popis: Beryllium (Be) has been used widely in specific areas of nuclear technology. Frequent monitoring of air and possible contaminated surfaces in U.S. Department of Energy (DOE) facilities is required to identify potential health risks and to protect U.S. DOE workers from beryllium-contaminated dust. A new method has been developed to rapidly remove spectral interferences prior to beryllium measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES) that allows lower detection limits. The ion exchange separation removes uranium (U), plutonium (Pu), thorium (Th), niobium (Nb), vanadium (V), molybdenum (Mo), zirconium (Zr), tungsten (W), iron (Fe), chromium (Cr), cerium (Ce), erbium (Er) and titanium (Ti). A stacked column consisting of Diphonix Resin and TEVA Resin reduces the levels of the spectral interferences so that low level Be measurements can be performed accurately. If necessary, an additional anion exchange separation can be used for further removal of interferences, particularly chromium. The method has been tested using spiked filters, spiked wipe samples and certified reference material (CRM) standards with high levels of interferences added. The method provides very efficient removal of spectral interferences with very good accuracy and precision for beryllium on filters or wipes. This new method offers improvements over other separation methods that have been used by removing large amounts of all the significant spectral interferences with greater simplicity and effectiveness. The effective removal of spectral interferences allows lower method detection limits (MDL) using inductively coupled atomic emission spectrometry. A vacuum box system is employed to reduce analytical time and reduce labor costs.
Databáze: OpenAIRE