Flexible G1 interpolation of quad meshes

Autor: Stefanie Hahmann, Georges-Pierre Bonneau
Přispěvatelé: Models and Algorithms for Visualization and Rendering (MAVERICK), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE), European Project: 291184,EC:FP7:ERC,ERC-2011-ADG_20110209,EXPRESSIVE(2012), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Rok vydání: 2014
Předmět:
Zdroj: Graphical Models
Graphical Models, 2014, 76 (6), pp.669-681. ⟨10.1016/j.gmod.2014.09.001⟩
Graphical Models, Elsevier, 2014, 76 (6), pp.669-681. ⟨10.1016/j.gmod.2014.09.001⟩
ISSN: 1524-0703
1524-0711
DOI: 10.1016/j.gmod.2014.09.001
Popis: International audience; Transforming an arbitrary mesh into a smooth G1 surface has been the subject of intensive research works. To get a visual pleasing shape without any imperfection even in the presence of extraordinary mesh vertices is still a challenging problem in particular when interpolation of the mesh vertices is required. We present a new local method, which produces visually smooth shapes while solving the interpolation problem. It consists of combining low degree biquartic Bézier patches with minimum number of pieces per mesh face, assembled together with G1-continuity. All surface control points are given explicitly. The construction is local and free of zero-twists. We further show that within this economical class of surfaces it is however possible to derive a sufficient number of meaningful degrees of freedom so that standard optimization techniques result in high quality surfaces.
Databáze: OpenAIRE