Neonatal administration of tamoxifen causes disruption of myometrial development but not adenomyosis in the C57/BL6J mouse
Autor: | Mohamed Khairy Mehasseb, Marwan Habiba, Stephen C. Bell |
---|---|
Rok vydání: | 2010 |
Předmět: |
Embryology
medicine.medical_specialty Endometriosis Uterus Vimentin Desmin Andrology Mice Endocrinology Animals Medicine Adenomyosis Gynecology biology business.industry Estrogen Antagonists Estrogen Receptor alpha Myometrium Obstetrics and Gynecology Cell Biology medicine.disease Immunohistochemistry Actins Fibronectins Mice Inbred C57BL Tamoxifen medicine.anatomical_structure Animals Newborn Reproductive Medicine biology.protein Female Laminin business Immunostaining medicine.drug |
Zdroj: | REPRODUCTION. 139:1067-1075 |
ISSN: | 1741-7899 1470-1626 |
DOI: | 10.1530/rep-09-0443 |
Popis: | We previously demonstrated that in the CD-1 mouse, which exhibits a high incidence of age-related adenomyosis, neonatal exposure to tamoxifen induced premature uterine adenomyosis and was associated with abnormal development particularly of the inner myometrium. In the present study, we examined the effect of neonatal tamoxifen administration upon uterine development in the C57/BL6J mouse strain that is not known to develop uterine adenomyosis. Female C57/BL6J pups (n=20) were treated with oral tamoxifen (1 mg/kg) from age 1 to 5 days. Uteri from control and treated mice were obtained on days 5, 10, 15 and 42 of age. We examined sections histologically using image analysis and immunohistochemistry for α-smooth muscle actin (ACTA2, α-SMA), desmin, vimentin, laminin, fibronectin and oestrogen receptor-α (ESR1). Following tamoxifen exposure, all uteri showed inner myometrium thinning, lack of continuity, disorganisation and bundling. However, adenomyosis was not seen in any uterus. ACTA2 immunostaining was less in the circular muscle layer of treated mice. The temporal pattern of desmin immunostaining found in control mice was absent in tamoxifen-treated mice. There was no difference in the localisation of laminin or fibronectin between control and tamoxifen-treated groups. However, laminin immunostaining was reduced in the circular muscle layer of treated mice. Vimentin could not be detected in either group. In conclusion, our results demonstrate that the development of the inner myometrium is particularly sensitive to oestrogen antagonism, and is affected by steroid receptor modulation. Although tamoxifen induces inner myometrial changes including that of ACTA2, desmin, ESR1 and laminin expression in C57/BL6J neonatal mice similar to those induced in CD-1 mice, C57/BL6J mice did not develop premature adenomyosis. Thus, disruption of the development and differentiation of the inner myometrium cannot alone explain the development of tamoxifen-associated adenomyosis, and this must be dependent upon its interaction with strain-dependent factors. |
Databáze: | OpenAIRE |
Externí odkaz: |