LIRMM-Advanse at SemEval-2019 Task 3: Attentive Conversation Modeling for Emotion Detection and Classification

Autor: Maximilien Servajean, Waleed Ragheb, Sandra Bringay, Jérôme Azé
Přispěvatelé: ADVanced Analytics for data SciencE (ADVANSE), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: 13th International Workshop on Semantic Evaluation in NAACL-HLT
SemEval: Semantic Evaluation in NAACL-HLT
SemEval: Semantic Evaluation in NAACL-HLT, Jun 2019, Minneapolis, MN, United States. pp.251-255
SemEval@NAACL-HLT
Popis: This paper addresses the problem of modeling textual conversations and detecting emotions. Our proposed model makes use of 1) deep transfer learning rather than the classical shallow methods of word embedding; 2) self-attention mechanisms to focus on the most important parts of the texts and 3) turn-based conversational modeling for classifying the emotions. The approach does not rely on any hand-crafted features or lexicons. Our model was evaluated on the data provided by the SemEval-2019 shared task on contextual emotion detection in text. The model shows very competitive results.
Databáze: OpenAIRE