Integrating Sphere Fourier Microscopy of Highly Directional Emission
Autor: | Jaco J. Geuchies, Christian D. Dieleman, Eric Johlin, Julia S. van der Burgt, Arjan J. Houtepen, Erik C. Garnett, Bruno Ehrler |
---|---|
Rok vydání: | 2021 |
Předmět: |
Materials science
Physics::Optics nanolens 02 engineering and technology 01 natural sciences Directivity Article law.invention 010309 optics Optics integrating sphere microscopy law 0103 physical sciences Microscopy directivity Electrical and Electronic Engineering dielectric Fourier microscopy business.industry 021001 nanoscience & nanotechnology Atomic and Molecular Physics and Optics Electronic Optical and Magnetic Materials Lens (optics) Wavelength Integrating sphere Quantum dot Cathode ray Light emission nanoantenna 0210 nano-technology business Biotechnology |
Zdroj: | ACS Photonics, 8(4) ACS Photonics |
ISSN: | 2330-4022 |
DOI: | 10.1021/acsphotonics.1c00010 |
Popis: | Accurately controlling light emission using nano- and microstructured lenses and antennas is an active field of research. Dielectrics are especially attractive lens materials due to their low optical losses over a broad bandwidth. In this work we measure highly directional light emission from patterned quantum dots (QDs) aligned underneath all-dielectric nanostructured microlenses. The lenses are designed with an evolutionary algorithm and have a theoretical directivity of 160. The fabricated structures demonstrate an experimental full directivity of 61 ± 3, three times higher than what has been estimated before, with a beaming half-angle of 2.6°. This high value compared to previous works is achieved via three mechanisms. First, direct electron beam patterning of QD emitters and alignment markers allowed for more localized emission and better emitter-lens alignment. Second, the lens fabrication was refined to minimize distortions between the designed shape and the final structure. Finally, a new measurement technique was developed that combines integrating sphere microscopy with Fourier microscopy. This enables complete directivity measurements, contrary to other reported values, which are typically only partial directivities or estimates of the full directivity that rely partly on simulations. The experimentally measured values of the complete directivity were higher than predicted by combining simulations with partial directivity measurements. High directivity was obtained from three different materials (cadmium-selenide-based QDs and two lead halide perovskite materials), emitting at 520, 620, and 700 nm, by scaling the lens size according to the emission wavelength. |
Databáze: | OpenAIRE |
Externí odkaz: |