Singular limits for models of selection and mutations with heavy-tailed mutation distribution
Autor: | Sepideh Mirrahimi |
---|---|
Přispěvatelé: | Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-PRES Université de Toulouse-Université Toulouse III - Paul Sabatier (UPS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Institut de Mathématiques de Toulouse UMR5219 ( IMT ), Université Toulouse 1 Capitole ( UT1 ) -Université Toulouse - Jean Jaurès ( UT2J ) -Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-PRES Université de Toulouse-Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ) |
Rok vydání: | 2020 |
Předmět: |
Asymptotic analysis
viscosity solutions nonlocal reaction term General Mathematics Dirac (software) Population 01 natural sciences Hamilton–Jacobi equation WKB approximation [ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] Mathematics - Analysis of PDEs FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Applied mathematics Quantitative Biology::Populations and Evolution 0101 mathematics 47G20 education viscosity solutions AMS Class No: 35K57 Mathematics education.field_of_study 49L25 Applied Mathematics 010102 general mathematics Key-Words: Fractional reaction-diffusion equation Hamilton-Jacobi equation AMS Class No: 35K57 35B25 92D15 010101 applied mathematics asymptotic analysis Distribution (mathematics) Mutation (genetic algorithm) Viscosity solution Analysis of PDEs (math.AP) |
Zdroj: | Journal de Mathématiques Pures et Appliquées Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, ⟨10.1016/j.matpur.2019.10.001⟩ Journal de Mathématiques Pures et Appliquées, 2019, ⟨10.1016/j.matpur.2019.10.001⟩ |
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2019.10.001 |
Popis: | In this article, we perform an asymptotic analysis of a nonlocal reaction-diffusion equation, with a fractional laplacian as the diffusion term and with a nonlocal reaction term. Such equation models the evolutionary dynamics of a phenotypically structured population. We perform a rescaling considering large time and small effect of mutations, but still with algebraic law. With such rescaling, we expect that the phenotypic density will concentrate as a Dirac mass which evolves in time. To study such concentration phenomenon, we extend an approach based on Hamilton-Jacobi equations with constraint, that has been developed to study models from evolutionary biology, to the case of fat-tailed mutation kernels. However, unlike previous works within this approach, the WKB transformation of the solution does not converge to a viscosity solution of a Hamilton-Jacobi equation but to a viscosity supersolution of such equation which is minimal in a certain class of supersolutions. Such property allows to derive the concentration of the population density as an evolving Dirac mass, under monotony conditions on the growth rate, similarly to the case with thin-tailed mutation kernels. |
Databáze: | OpenAIRE |
Externí odkaz: |