New Asymptotic Profiles of Nonstationnary Solutions of the Navier-Stokes System
Autor: | François Vigneron, Lorenzo Brandolese |
---|---|
Přispěvatelé: | Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2007 |
Předmět: |
Mathematics(all)
General Mathematics [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] FOS: Physical sciences upper bound estimates 01 natural sciences Measure (mathematics) Upper and lower bounds Mathematics - Analysis of PDEs [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] far field asymptotic lower bound estimates FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Far field asymptotics Navier stokes 0101 mathematics Mathematical Physics Mathematics vorticity Asymptotic behavior at infinity large distance behavior Mild solutions to the Navier–Stokes system 76D05 35Q30 Applied Mathematics 010102 general mathematics Mathematical analysis 35Q30 76D05 Peetre weight Mathematical Physics (math-ph) Stokes flow 010101 applied mathematics Flow (mathematics) Compressibility Potential flow Constant (mathematics) Analysis of PDEs (math.AP) |
Zdroj: | Journal de Mathématiques Pures et Appliquées Journal de Mathématiques Pures et Appliquées, Elsevier, 2007, ⟨10.1016/j.matpur.2007.04.007⟩ |
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2007.04.007⟩ |
Popis: | We show that solutions $u(x,t)$ of the non-stationnary incompressible Navier--Stokes system in $\R^d$ ($d\geq2$) starting from mild decaying data $a$ behave as $|x|\to\infty$ as a potential field: u(x,t) = e^{t\Delta}a(x) + \gamma_d\nabla_x(\sum_{h,k} \frac{\delta_{h,k}|x|^2 - d x_h x_k}{d|x|^{d+2}} K_{h,k}(t))+\mathfrak{o}(\frac{1}{|x|^{d+1}}) where $\gamma_d$ is a constant and $K_{h,k}=\int_0^t(u_h| u_k)_{L^2}$ is the energy matrix of the flow. We deduce that, for well localized data, and for small $t$ and large enough $|x|$, c t |x|^{-(d+1)} \le |u(x,t)|\le c' t |x|^{-(d+1)}, where the lower bound holds on the complementary of a set of directions, of arbitrary small measure on $\mathbb{S}^{d-1}$. We also obtain new lower bounds for the large time decay of the weighted-$L^p$ norms, extending previous results of Schonbek, Miyakawa, Bae and Jin. Comment: 26 pages, article to appear in Journal de Math\'ematiques Pures et Appliqu\'ees |
Databáze: | OpenAIRE |
Externí odkaz: |