Fermi surface in the hidden-order state of URu2Si2 under intense pulsed magnetic fields up to 81 T

Autor: Scheerer, Gernot, Knafo, William, Aoki, D., Nardone, Marc, Zitouni, Abdelaziz, J. B., Eard, Billette, Julien, Barata, J., Jaudet, C., Suleiman, M., Frings, P., Drigo, Loïc, Audouard, Alain, D. Matsuda, T., Pourret, A., Knebel, G., Flouquet, J.
Přispěvatelé: Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Instrumentation, Material and Correlated Electrons Physics (IMAPEC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire National des Champs Magnétiques Pulsés (LNCMP), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Laboratoire de Physique Quantique (LPQ), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Physical Review B: Condensed Matter and Materials Physics (1998-2015)
Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2014, 89, pp.165107
Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2014, 89, pp.165107. ⟨10.1103/PhysRevB.89.165107⟩
ISSN: 1098-0121
1550-235X
DOI: 10.1103/PhysRevB.89.165107⟩
Popis: We present measurements of the resistivity $\rho_{x,x}$ of URu2Si2 high-quality single crystals in pulsed high magnetic fields up to 81~T at a temperature of 1.4~K and up to 60~T at temperatures down to 100~mK. For a field \textbf{H} applied along the magnetic easy-axis \textbf{c}, a strong sample-dependence of the low-temperature resistivity in the hidden-order phase is attributed to a high carrier mobility. The interplay between the magnetic and orbital properties is emphasized by the angle-dependence of the phase diagram, where magnetic transition fields and crossover fields related to the Fermi surface properties follow a 1/$\cos\theta$-law, $\theta$ being the angle between \textbf{H} and \textbf{c}. For $\mathbf{H}\parallel\mathbf{c}$, a crossover defined at a kink of $\rho_{x,x}$, as initially reported in [Shishido et al., Phys. Rev. Lett. \textbf{102}, 156403 (2009)], is found to be strongly sample-dependent: its characteristic field $\mu_0H^*$ varies from $\simeq20$~T in our best sample with a residual resistivity ratio RRR of $225$ to $\simeq25$~T in a sample with a RRR of $90$. A second crossover is defined at the maximum of $\rho_{x,x}$ at the sample-independent characteristic field $\mu_0H_{\rho,max}^{LT}\simeq30$~T. Fourier analyzes of SdH oscillations show that $H_{\rho,max}^{LT}$ coincides with a sudden modification of the Fermi surface, while $H^*$ lies in a regime where the Fermi surface is smoothly modified. For $\mathbf{H}\parallel\mathbf{a}$, i) no phase transition is observed at low temperature and the system remains in the hidden-order phase up to 81~T, ii) quantum oscillations surviving up to 7~K are related to a new and almost-spherical orbit - for the first time observed here - at the frequency $F_\lambda\simeq1400$~T and associated with a low effective mass $m^*_\lambda=(1\pm0.5)\cdot m_0$, and iii) no Fermi surface modification occurs up to 81~T.
Comment: 11 pages, 8 figures
Databáze: OpenAIRE