Assembly of bacterial cell division protein FtsZ into dynamic biomolecular condensates

Autor: Silvia Zorrilla, Germán Rivas, Miguel Ángel Robles-Ramos, Begoña Monterroso, William Margolin, Carlos de Alfonso
Přispěvatelé: Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), National Institutes of Health (US), Agencia Estatal de Investigación (España), European Commission, Zorrilla, Silvia [0000-0002-6309-9058], Alfonso, Carlos [0000-0001-7165-4800], Margolin, William [0000-0001-6557-7706], Rivas, Germán [0000-0003-3450-7478], Monterroso, Begoña [0000-0003-2538-084X], Zorrilla, Silvia, Alfonso, Carlos, Margolin, William, Rivas, Germán, Monterroso, Begoña
Rok vydání: 2021
Předmět:
Zdroj: Digital.CSIC. Repositorio Institucional del CSIC
instname
Biochim Biophys Acta Mol Cell Res
ISSN: 0167-4889
DOI: 10.1016/j.bbamcr.2021.118986
Popis: 28 p.- 6 fig.
Biomolecular condensation through phase separation may be a novel mechanism to regulate bacterial processes,including cell division. Previous work revealed that FtsZ, a protein essential for cytokinesis in most bacteria,forms biomolecular condensates with SlmA, a protein that protects the chromosome from damage inflicted by the division machinery in Escherichia coli. The absence of condensates composed solely of FtsZ under the conditions used in that study suggested this mechanism was restricted to nucleoid occlusion by SlmA or to bacteria containing this protein. Here we report that FtsZ alone, under physiologically relevant conditions, can demix into condensates in bulk and when encapsulated in synthetic cell-like systems generated by microfluidics. Condensate assembly depends on FtsZ being in the GDP-bound state and on conditions mimicking the crowded environment of the cytoplasm that promote its oligomerization. Condensates are dynamic and reversibly convert into filaments upon GTP addition. Notably, FtsZ lacking its C-terminal disordered region, a structural element likely to favor biomolecular condensation, also forms condensates, albeit less efficiently. The inherent tendency of FtsZ to form condensates susceptible to modulation by physiological factors, including binding partners, suggests that such mechanisms may play a more general role in bacterial division than initially envisioned.
This work was supported by the Spanish Ministerio de Economía y Competitividad (BFU2014-52070-C2-2-P and BFU2016-75471-C2-1-P,AEI/FEDER, UE, to G.R.), by the Spanish Ministerio de Ciencia e Innovación(2019AEP088 and PID2019-104544GB-100/ AEI/ 10.13039/501100011033, to G.R. and S.Z.), and by the National Institutes of Health (GM131705, to W.M.). M.Á.R.-R. was supported by the Agencia Estatal de Investigación and the European Social Fund through grant BES-2017-082003.
Databáze: OpenAIRE