On the Grassmann graph of linear codes

Autor: Ilaria Cardinali, Mariusz Kwiatkowski, Luca Giuzzi
Rok vydání: 2021
Předmět:
Zdroj: Finite Fields and Their Applications. 75:101895
ISSN: 1071-5797
Popis: Let $\Gamma(n,k)$ be the Grassmann graph formed by the $k$-dimensional subspaces of a vector space of dimension $n$ over a field $\mathbb F$ and, for $t\in \mathbb{N}\setminus \{0\}$, let $\Delta_t(n,k)$ be the subgraph of $\Gamma(n,k)$ formed by the set of linear $[n,k]$-codes having minimum dual distance at least $t+1$. We show that if $|{\mathbb F}|\geq{n\choose t}$ then $\Delta_t(n,k)$ is connected and it is isometrically embedded in $\Gamma(n,k)$. This generalizes some results of [M. Kwiatkowski, M. Pankov, "On the distance between linear codes", Finite Fields Appl. 39 (2016), 251--263] and [M. Kwiatkowski, M. Pankov, A. Pasini, "The graphs of projective codes" Finite Fields Appl. 54 (2018), 15--29].
Comment: 13 pages/final version
Databáze: OpenAIRE