Unboxing mutations: Connecting mutation types with evolutionary consequences
Autor: | Alexander Suh, Alexandre Blanckaert, Inês Fragata, Anja M. Westram, Tanja Slotte, Emma L. Berdan |
---|---|
Přispěvatelé: | Repositório da Universidade de Lisboa |
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
0301 basic medicine Mutation rate mutation rate Population Population genetics Single-nucleotide polymorphism adaptation Computational biology Biology 010603 evolutionary biology 01 natural sciences Evolutionsbiologi 03 medical and health sciences structural variant Mutation Rate Genetic algorithm Matematikk og Naturvitenskap: 400::Basale biofag: 470::Biokjemi: 476 [VDP] Genetics Selection Genetic education Ecology Evolution Behavior and Systematics Population Density Evolutionary Biology education.field_of_study Models Genetic Evolutionary significance population genetics Matematikk og Naturvitenskap: 400::Basale biofag: 470::Molekylærbiologi: 473 [VDP] Other Quantitative Biology (q-bio.OT) Adaptation Physiological Biological Evolution Quantitative Biology - Other Quantitative Biology recombination 030104 developmental biology Genetics Population speciation Conceptual framework Evolutionary biology FOS: Biological sciences Matematikk og Naturvitenskap: 400::Basale biofag: 470::Genetikk og genomikk: 474 [VDP] Mutation (genetic algorithm) Chromosome Inversion Mutation Key (cryptography) mutation Adaptation distribution of fitness effects |
Zdroj: | Molecular Ecology Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP |
ISSN: | 1365-294X |
Popis: | A key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance. |
Databáze: | OpenAIRE |
Externí odkaz: |