Learning and avoiding disorder in multimode fibers

Autor: Sebastien M. Popoff, Yaron Bromberg, Julien de Rosny, Maxime W. Matthès
Přispěvatelé: Institut Langevin - Ondes et Images (UMR7587) (IL), Sorbonne Université (SU)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Paris (UP)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Centre National de la Recherche Scientifique (CNRS), ANR-16-CE25-0008,MOLOTOF,Multiplexage Multimode de la Lumière pour les Télécommunications Optiques Fibrées(2016), ANR-10-LABX-0024,WIFI,Institut Langevin : Ondes et Images, du Fondamental à l'Innovation(2010), ANR-10-IDEX-0001,PSL,Paris Sciences et Lettres(2010)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Physical Review X
Physical Review X, American Physical Society, 2021, 11, pp.021060
Physical Review X, Vol 11, Iss 2, p 021060 (2021)
ISSN: 2160-3308
DOI: 10.1103/PhysRevX.11.021060
Popis: Multimode optical fibers (MMFs) have gained renewed interest in the past decade, emerging as a way to boost optical communication data rates in the context of an expected saturation of current single-mode fiber-based networks. They are also attractive for endoscopic applications, offering the possibility to achieve a similar information content as multicore fibers, but with a much smaller footprint, thus reducing the invasiveness of endoscopic procedures. However, these advances are hindered by the unavoidable presence of disorder that affects the propagation of light in MMFs and limits their practical applications. We introduce here a general framework to study and avoid the effect of disorder in wave-based systems and demonstrate its application for multimode fibers. We experimentally find an almost complete set of optical channels that are resilient to disorder induced by strong deformations. These deformation principal modes are obtained by only exploiting measurements for weak perturbations harnessing the generalized Wigner-Smith operator. We explain this effect by demonstrating that, even for a high level of disorder, the propagation of light in MMFs can be characterized by just a few key properties. These results are made possible thanks to a precise and fast estimation of the modal transmission matrix of the fiber which relies on a model-based optimization using deep learning frameworks.
Databáze: OpenAIRE