$L_p$-$L_q$-theory for a quasilinear non-isothermal Westervelt equation
Autor: | Mathias Wilke |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | We investigate a quasilinear system consisting of the Westervelt equation from nonlinear acoustics and Pennes bioheat equation, subject to Dirichlet or Neumann boundary conditions. The concept of maximal regularity of type $L_p$-$L_q$ is applied to prove local and global well-posedness. Moreover, we show by a parameter trick that the solutions regularize instantaneously. Finally, we compute the equilibria of the system and investigate the long-time behaviour of solutions starting close to equilibria. 16 pages |
Databáze: | OpenAIRE |
Externí odkaz: |