Efficient Tiled Sparse Matrix Multiplication through Matrix Signatures

Autor: Aravind Sukumaran-Rajam, P. Sadayyapan, Sureyya Emre Kurt, Fabrice Rastello
Přispěvatelé: University of Utah, Washington State University (WSU), Compiler Optimization and Run-time Systems (CORSE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), School of computing [UTAH]
Rok vydání: 2020
Předmět:
Sparse Dense Matrix Multiplication
Computer science
Computation
MathematicsofComputing_NUMERICALANALYSIS
010103 numerical & computational mathematics
02 engineering and technology
01 natural sciences
Kernel (linear algebra)
Matrix (mathematics)
0202 electrical engineering
electronic engineering
information engineering

[INFO]Computer Science [cs]
Tensor
0101 mathematics
Multi-core
Sparse matrix computations
SpMM
Sparse matrix
[INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL]
SpMDM
sparse matrix signature
Matrix multiplication
[INFO.INFO-PF]Computer Science [cs]/Performance [cs.PF]
Kernel (image processing)
sparse tiling
020201 artificial intelligence & image processing
Multiplication
[INFO.INFO-DC]Computer Science [cs]/Distributed
Parallel
and Cluster Computing [cs.DC]

Algorithm
Zdroj: SC
SC 2020-International Conference for High Performance Computing, Networking, Storage and Analysis
SC 2020-International Conference for High Performance Computing, Networking, Storage and Analysis, Nov 2020, virtual, United States. pp.1-13
DOI: 10.1109/sc41405.2020.00091
Popis: International audience; Tiling is a key technique to reduce data movement in matrix computations. While tiling is well understood and widely used for dense matrix/tensor computations, effective tiling of sparse matrix computations remains a challenging problem. This paper proposes a novel method to efficiently summarize the impact of the sparsity structure of a matrix on achievable data reuse as a one-dimensional signature, which is then used to build an analytical cost model for tile size optimization for sparse matrix computations. The proposed model-driven approach to sparse tiling is evaluated on two key sparse matrix kernels: Sparse Matrix-Dense Matrix Multiplication (SpMM) and Sampled Dense-Dense Matrix Multiplication (SDDMM). Experimental results demonstrate that model-based tiled SpMM and SDDMM achieve high performance relative to the current state-of-the-art.
Databáze: OpenAIRE