Nonlinear quasistatic problems of gradient type in inelastic deformations theory
Autor: | Przemysław Kamiński |
---|---|
Rok vydání: | 2009 |
Předmět: |
Nonlinear constitutive equations
Partial differential equation Differential equation Applied Mathematics Deformation theory Constitutive equation Mathematical analysis Mathematics::Analysis of PDEs Yosida approximation Partial differential equations Mathematics::Numerical Analysis Nonlinear system Condensed Matter::Materials Science Monotone polygon Young measures Mechanics of deformable solids Quasistatic process Analysis Mathematics Young measure |
Zdroj: | Journal of Mathematical Analysis and Applications. 357(1):284-299 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2009.04.013 |
Popis: | In this paper we study nonlinear quasistatic problems from inelastic deformations theory. Only strictly monotone, gradient-type constitutive equations are considered. We prove existence for both coercive and non-coercive models, using energy estimates and Young measures. For non-coercive models we use the L 2 self-controlling property. |
Databáze: | OpenAIRE |
Externí odkaz: |