An Erdös–Fuchs theorem for ordered representation functions

Autor: Christoph Spiegel, Gonzalo Cao-Labora, Juanjo Rué
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
Rok vydání: 2020
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: Let $k\geq 2$ be a positive integer. We study concentration results for the ordered representation functions $r^{\leq}_k(A,n) = \# \big\{ (a_1 \leq \dots \leq a_k) \in A^k : a_1+\dots+a_k = n \big\}$ and $r^{ 0$ and $\star \in \{\leq,0$. These results extend two theorems for the non-ordered representation function proved by Erd\H{o}s and Fuchs in the case of $k=2$ (J. of the London Math. Society 1956).
Comment: 15 pages
Databáze: OpenAIRE