A multi-modal dance corpus for research into interaction between humans in virtual environments

Autor: Philip Kelly, Alfred Dielmann, Georgios A. Kordelas, Robin Tournemenne, Slim Essid, Marc Gowing, Thomas Fillon, Gael Richard, Xinyu Lin, Petros Daras, Anil Aksay, Aymeric Masurelle, Noel E. O'Connor, Vlado Kitanovski, Qianni Zhang, Ebroul Izquierdo
Přispěvatelé: Signal, Statistique et Apprentissage (S2A), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Département Traitement du Signal et des Images (TSI), Télécom ParisTech-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Journal on Multimodal User Interfaces
Journal on Multimodal User Interfaces, Springer, 2012, pp.1-14. ⟨10.1007/s12193-012-0109-5⟩
ISSN: 1783-7677
1783-8738
DOI: 10.1007/s12193-012-0109-5⟩
Popis: We present a new, freely available, multimodal corpus for research into, amongst other areas, real-time realistic interaction between humans in online virtual environments. The specific corpus scenario focuses on an online dance class application scenario where students, with avatars driven by whatever 3D capture technology is locally available to them, can learn choreographies with teacher guidance in an online virtual dance studio. As the dance corpus is focused on this scenario, it consists of student/teacher dance choreographies concurrently captured at two different sites using a variety of media modalities, including synchronised audio rigs, multiple cameras, wearable inertial measurement devices and depth sensors. In the corpus, each of the several dancers performs a number of fixed choreographies, which are graded according to a number of specific evaluation criteria. In addition, ground-truth dance choreography annotations are provided. Furthermore, for unsynchronised sensor modalities, the corpus also includes distinctive events for data stream synchronisation. The total duration of the recorded content is 1 h and 40 min for each single sensor, amounting to 55 h of recordings across all sensors. Although the dance corpus is tailored specifically for an online dance class application scenario, the data is free to download and use for any research and development purposes.
Databáze: OpenAIRE