Functional Trade-Offs Asymmetrically Promote Phenotypic Evolution

Autor: Edward D Burress, Martha M Muñoz
Rok vydání: 2022
Předmět:
Zdroj: Systematic Biology. 72:150-160
ISSN: 1076-836X
1063-5157
DOI: 10.1093/sysbio/syac058
Popis: Trade-offs are thought to bias evolution and are core features of many anatomical systems. Therefore, trade-offs may have far-reaching macroevolutionary consequences, including patterns of morphological, functional, and ecological diversity. Jaws, like many complex anatomical systems, are comprised of elements involved in biomechanical trade-offs. We test the impact of a core mechanical trade-off, the transmission of velocity versus force (i.e., mechanical advantage), on rates of jaw evolution in Neotropical cichlids. Across 130 species representing a wide array of feeding ecologies, we find that the velocity–force trade-off impacts the evolution of the surrounding jaw system. Specifically, rates of jaw evolution are faster at functional extremes than in more functionally intermediate or unspecialized jaws. Yet, surprisingly, the effect on jaw evolution is uneven across the extremes of the velocity–force continuum. Rates of jaw evolution are 4- to 10-fold faster in velocity-modified jaws, whereas force-modified jaws are 7- to 18-fold faster, compared to unspecialized jaws, depending on the extent of specialization. Further, we find that a more extreme mechanical trade-off resulted in faster rates of jaw evolution. The velocity–force trade-off reflects a gradient from specialization on capture-intensive (e.g., evasive or buried) to processing-intensive prey (e.g., attached or shelled), respectively. The velocity extreme of the trade-off is characterized by large magnitudes of trait change leading to functionally divergent specialists and ecological stasis. By contrast, the force extreme of the trade-off is characterized by enhanced ecological lability made possible by phenotypes more readily co-opted for different feeding ecologies. This asymmetry of macroevolutionary outcomes along each extreme is likely the result of an enhanced utility of the pharyngeal jaw system as force-modified oral jaws are adapted for prey that requires intensive processing (e.g., algae, detritus, and mollusks). The velocity–force trade-off, a fundamental feature of many anatomical systems, promotes rapid phenotypic evolution of the surrounding jaw system in a canonical continental adaptive radiation. Considering that the velocity–force trade-off is an inherent feature of all jaw systems that involve a lower element that rotates at a joint, spanning the vast majority of vertebrates, our results may be widely applicable across the tree of life. [Adaptive radiation; constraint; decoupling; jaws; macroevolution; specialization.]
Databáze: OpenAIRE