Quantum criticality in the two-dimensional periodic Anderson model

Autor: Thomas Schäfer, Alessandro Toschi, Andrey A. Katanin, Motoharu Kitatani, Karsten Held
Rok vydání: 2018
Předmět:
DOI: 10.48550/arxiv.1812.03821
Popis: We study the phase diagram and quantum critical region of one of the fundamental models for electronic correlations: the periodic Anderson model. Employing the recently developed dynamical vertex approximation, we find a phase transition between a zero-temperature antiferromagnetic insulator and a Kondo insulator. In the quantum critical region, we determine a critical exponent $\gamma\!=\!2$ for the antiferromagnetic susceptibility. At higher temperatures, we have free spins with $\gamma\!=\!1$ instead, whereas at lower temperatures, there is an even stronger increase and suppression of the susceptibility below and above the quantum critical point, respectively.
Comment: 6 pages, 4 figures (+ 6 pages Supplemental Material)
Databáze: OpenAIRE