Quantum criticality in the two-dimensional periodic Anderson model
Autor: | Thomas Schäfer, Alessandro Toschi, Andrey A. Katanin, Motoharu Kitatani, Karsten Held |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
Phase transition Condensed matter physics Strongly Correlated Electrons (cond-mat.str-el) Kondo insulator General Physics and Astronomy FOS: Physical sciences 02 engineering and technology 021001 nanoscience & nanotechnology 01 natural sciences Condensed Matter - Strongly Correlated Electrons Quantum critical point 0103 physical sciences Antiferromagnetism Condensed Matter::Strongly Correlated Electrons 010306 general physics 0210 nano-technology Anderson impurity model Quantum Critical exponent Phase diagram |
DOI: | 10.48550/arxiv.1812.03821 |
Popis: | We study the phase diagram and quantum critical region of one of the fundamental models for electronic correlations: the periodic Anderson model. Employing the recently developed dynamical vertex approximation, we find a phase transition between a zero-temperature antiferromagnetic insulator and a Kondo insulator. In the quantum critical region, we determine a critical exponent $\gamma\!=\!2$ for the antiferromagnetic susceptibility. At higher temperatures, we have free spins with $\gamma\!=\!1$ instead, whereas at lower temperatures, there is an even stronger increase and suppression of the susceptibility below and above the quantum critical point, respectively. Comment: 6 pages, 4 figures (+ 6 pages Supplemental Material) |
Databáze: | OpenAIRE |
Externí odkaz: |