Ischemic postconditioning prevents surge of presynaptic glutamate release by activating mitochondrial ATP-dependent potassium channels in the mouse hippocampus

Autor: Yoichi Ogawa, Yudai Morisaki, Young Su Park, Ichiro Nakagawa, Shohei Yokoyama, Yasuhiko Saito, Hiroyuki Nakase, Yasushi Motoyama
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: PLoS ONE, Vol 14, Iss 4, p e0215104 (2019)
ISSN: 1932-6203
Popis: A mild ischemic load applied after a lethal ischemic insult reduces the subsequent ischemia–reperfusion injury, and is called ischemic postconditioning (PostC). We studied the effect of ischemic PostC on synaptic glutamate release using a whole-cell patch-clamp technique. We recorded spontaneous excitatory post-synaptic currents (sEPSCs) from CA1 pyramidal cells in mouse hippocampal slices. The ischemic load was perfusion of artificial cerebrospinal fluid (ACSF) equilibrated with mixed gas (95% N2 and 5% CO2). The ischemic load was applied for 7.5 min, followed by ischemic PostC 30 s later, consisting of three cycles of 15 s of reperfusion and 15 s of re-ischemia. We found that a surging increase in sEPSCs frequency occurred during the immediate-early reperfusion period after the ischemic insult. We found a significant positive correlation between cumulative sEPSCs and the number of dead CA1 neurons (r = 0.70; p = 0.02). Ischemic PostC significantly suppressed this surge of sEPSCs. The mitochondrial KATP (mito-KATP) channel opener, diazoxide, also suppressed the surge of sEPSCs when applied for 15 min immediately after the ischemic load. The mito-KATP channel blocker, 5-hydroxydecanoate (5-HD), significantly attenuated the suppressive effect of both ischemic PostC and diazoxide application on the surge of sEPSCs. These results suggest that the opening of mito-KATP channels is involved in the suppressive effect of ischemic PostC on synaptic glutamate release and protection against neuronal death. We hypothesize that activation of mito-KATP channels prevents mitochondrial malfunction and breaks mutual facilitatory coupling between glutamate release and Ca2+ entry at presynaptic sites.
Databáze: OpenAIRE