Set systems with distinct sumsets

Autor: Oriol Serra, Maximilian Wötzel, Javier Cilleruelo
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
Rok vydání: 2018
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
ISSN: 1571-0653
DOI: 10.1016/j.endm.2018.06.004
Popis: A family A of k-subsets of { 1 , 2 , … , N } is a Sidon system if the sumsets A + A ′ , A , A ′ ∈ A are pairwise distinct. We show that the largest cardinality F k ( N ) of a Sidon system of k-subsets of [ N ] satisfies F k ( N ) ≤ ( N − 1 k − 1 ) + N − k and the asymptotic lower bound F k ( N ) = Ω k ( N k − 1 ) . More precise bounds on F k ( N ) are obtained for k ≤ 3 . We also obtain the threshold probability for a random system to be Sidon for k = 2 and 3.
Databáze: OpenAIRE