Shape part Transfer via semantic latent space factorization

Autor: Laurent D. Cohen, Raphael Groscot, Leonidas J. Guibas
Přispěvatelé: CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Geometric Science of Information
Geometric Science of Information (GSI2019)
Geometric Science of Information (GSI2019), Aug 2019, Toulouse, France. pp.511-519, ⟨10.1007/978-3-030-26980-7_53⟩
Lecture Notes in Computer Science ISBN: 9783030269791
GSI
DOI: 10.1007/978-3-030-26980-7_53⟩
Popis: International audience; We present a latent space factorization that controls a generative neural network for shapes in a semantic way. Our method uses the segmentation data present in a shapes collection to explicitly factorize the encoder of a pointcloud autoencoder network, replacing it by several sub-encoders. This allows to learn a semantically-structured latent space in which we can uncover statistical modes corresponding to semantically similar shapes, as well as mixing parts from several objects to create hybrids and quickly exploring design ideas through varying shape combinations. Our work differs from existing methods in two ways: first, it proves the usefulness of neural networks to achieve shape combinations and second, adapts the whole geometry of the object to accommodate for its different parts.
Databáze: OpenAIRE