On some arithmetic properties of Mahler functions

Autor: Sara Checcoli, Julien Roques
Přispěvatelé: Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Rolland, Ariane
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Israël Journal of Mathematics
Israël Journal of Mathematics, The Hebrew University Magnes Press, 2018, 228 (2), pp.801-833
Israël Journal of Mathematics, Hebrew University Magnes Press, 2018, 228 (2), pp.801-833
ISSN: 0021-2172
1565-8511
Popis: Mahler functions are power series f(x) with complex coefficients for which there exist a natural number n and an integer l ≥ 2 such that f(x), f(xl),..., $$f({x^{{\ell ^{n - 1}}}}),f({x^{{\ell ^n}}})$$ are linearly dependent over ℂ(x). The study of the transcendence of their values at algebraic points was initiated by Mahler around the’ 30s and then developed by many authors. This paper is concerned with some arithmetic aspects of these functions. In particular, if f(x) satisfies f(x) = p(x)f(xl) with p(x) a polynomial with integer coefficients, we show how the behaviour of f(x) mirrors on the polynomial p(x). We also prove some general results on Mahler functions in analogy with G-functions and E-functions.
Databáze: OpenAIRE