Cycle-Consistent Adversarial Networks for Realistic Pervasive Change Generation in Remote Sensing Imagery

Autor: James Theiler, Christopher X. Ren, Alice M. S. Durieux, Amanda Ziemann
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: SSIAI
DOI: 10.13140/rg.2.2.17398.75844
Popis: This paper introduces a new method of generating realistic pervasive changes in the context of evaluating the effectiveness of change detection algorithms in controlled settings. The method – a cycle-consistent adversarial network (CycleGAN) – requires low quantities of training data to generate realistic changes. Here we show an application of CycleGAN in creating realistic snow-covered scenes of multispectral Sentinel-2 imagery, and demonstrate how these images can be used as a test bed for anomalous change detection algorithms.
Databáze: OpenAIRE