KCNQ5 K(+) channels control hippocampal synaptic inhibition and fast network oscillations
Autor: | Oliver Kobler, Matthias Heidenreich, Alexey Ponomarenko, Thomas J. Jentsch, Pawel Fidzinski, Dietmar Schmitz, Sebastian Schuetze, Tatiana Korotkova, Werner Zuschratter, Nikolaus Maier |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
metabolism [GABAergic Neurons]
Postsynaptic Current Presynaptic inhibition General Physics and Astronomy Hippocampus Action Potentials metabolism [Hippocampus] Hippocampal formation Inhibitory postsynaptic potential Synaptic Transmission General Biochemistry Genetics and Molecular Biology KCNQ5 channel mouse Epilepsy Interneurons In vivo medicine Animals GABAergic Neurons metabolism [Interneurons] Multidisciplinary KCNQ Potassium Channels Chemistry metabolism [KCNQ Potassium Channels] Pyramidal Cells physiology [Neural Inhibition] Neural Inhibition General Chemistry Anatomy metabolism [Synapses] medicine.disease Shunting Mice Inbred C57BL Protein Transport metabolism [Pyramidal Cells] Synapses physiology [Nerve Net] ddc:500 Nerve Net Neuroscience |
Zdroj: | Nature Communications 6(1), 6254 (2015). doi:10.1038/ncomms7254 |
DOI: | 10.1038/ncomms7254 |
Popis: | KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) K(+) channels dampen neuronal excitability and their functional impairment may lead to epilepsy. Less is known about KCNQ5 (Kv7.5), which also displays wide expression in the brain. Here we show an unexpected role of KCNQ5 in dampening synaptic inhibition and shaping network synchronization in the hippocampus. KCNQ5 localizes to the postsynaptic site of inhibitory synapses on pyramidal cells and in interneurons. Kcnq5(dn/dn) mice lacking functional KCNQ5 channels display increased excitability of different classes of interneurons, enhanced phasic and tonic inhibition, and decreased electrical shunting of inhibitory postsynaptic currents. In vivo, loss of KCNQ5 function leads to reduced fast (gamma and ripple) hippocampal oscillations, altered gamma-rhythmic discharge of pyramidal cells and impaired spatial representations. Our work demonstrates that KCNQ5 controls excitability and function of hippocampal networks through modulation of synaptic inhibition. |
Databáze: | OpenAIRE |
Externí odkaz: |