Monotonic Distributive Semilattices
Autor: | María Paula Menchón, Sergio Arturo Celani |
---|---|
Rok vydání: | 2018 |
Předmět: |
DISTRIBUTIVE MEET SEMILATTICES
DS-SPACES Pure mathematics Class (set theory) Matemáticas Mathematics::General Mathematics Duality (optimization) Monotonic function 0102 computer and information sciences Intuitionistic logic Modal operator 01 natural sciences Representation theory Matemática Pura purl.org/becyt/ford/1 [https] Computer Science::Logic in Computer Science FOS: Mathematics 0101 mathematics Mathematics Algebra and Number Theory 010102 general mathematics purl.org/becyt/ford/1.1 [https] MONOTONIC MODAL LOGICS Mathematics - Logic 16. Peace & justice Computational Theory and Mathematics Distributive property 010201 computation theory & mathematics Geometry and Topology Variety (universal algebra) Logic (math.LO) MODAL OPERATORS CIENCIAS NATURALES Y EXACTAS |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
ISSN: | 1572-9273 0167-8094 |
DOI: | 10.1007/s11083-018-9477-0 |
Popis: | In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses. Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina Fil: Menchón, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |