Structure Driven Prediction of Chromatographic Retention Times: Applications to Pharmaceutical Analysis
Autor: | Claudio Brunelli, James C. Heaton, Roman Szucs, Roland Brown, Jasna Hradski |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
Pharmaceutical drug Data Analysis Computer science Process (engineering) medicine.medical_treatment Quantitative Structure-Activity Relationship Validation Studies as Topic 01 natural sciences Catalysis Article Inorganic Chemistry lcsh:Chemistry 03 medical and health sciences Molecular descriptor Component (UML) medicine quantitative structure retention relationships Pharmacokinetics Physical and Theoretical Chemistry Related impurities Molecular Biology lcsh:QH301-705.5 Spectroscopy Structure (mathematical logic) Active ingredient Chromatography 010401 analytical chemistry Organic Chemistry chromatographic method development Quantitative structure General Medicine Models Theoretical pharmaceutical analysis 0104 chemical sciences Computer Science Applications Kinetics 030104 developmental biology Pharmaceutical Preparations lcsh:Biology (General) lcsh:QD1-999 Algorithms |
Zdroj: | International Journal of Molecular Sciences Volume 22 Issue 8 International Journal of Molecular Sciences, Vol 22, Iss 3848, p 3848 (2021) |
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms22083848 |
Popis: | Pharmaceutical drug development relies heavily on the use of Reversed-Phase Liquid Chromatography methods. These methods are used to characterize active pharmaceutical ingredients and drug products by separating the main component from related substances such as process related impurities or main component degradation products. The results presented here indicate that retention models based on Quantitative Structure Retention Relationships can be used for de-risking methods used in pharmaceutical analysis and for the identification of optimal conditions for separation of known sample constituents from postulated/hypothetical components. The prediction of retention times for hypothetical components in established methods is highly valuable as these compounds are not usually readily available for analysis. Here we discuss the development and optimization of retention models, selection of the most relevant structural molecular descriptors, regression model building and validation. We also present a practical example applied to chromatographic method development and discuss the accuracy of these models on selection of optimal separation parameters. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |