Dependence of inherent selective atomic layer deposition of FeOxon Pt nanoparticles on the coreactant and temperature
Autor: | Marc J. M. Merkx, Jiaming Cai, Yanwei Wen, Kun Cao, Rong Chen, Yu-Xiao Lan, Wilhelmus M. M. Kessels, Adriaan J. M. Mackus, Yao Jing |
---|---|
Přispěvatelé: | Plasma & Materials Processing, Selective atomic-scale processing for nanoelectronics, Atomic scale processing, Processing of low-dimensional nanomaterials, EIRES |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
In situ
Materials science Surfaces and Interfaces Condensed Matter Physics Surfaces Coatings and Films Reaction rate Metal Atomic layer deposition Chemical engineering visual_art Oxidizing agent visual_art.visual_art_medium Density functional theory Fourier transform infrared spectroscopy Selectivity |
Zdroj: | Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 39(1):012404. AVS Science and Technology Society |
ISSN: | 0734-2101 |
DOI: | 10.1116/6.0000668 |
Popis: | Selective growth of metal oxides on metal via atomic layer deposition (ALD) has attracted great interest due to their potential applications in the semiconductor industry, as well as energy and environment fields. In this work, the influence of an oxidizing coreactant and the reaction temperature on the selective growth of FeOx on the facets of Pt nanoparticles and low coordination edge sites are studied via in situ Fourier transform infrared spectroscopy (FTIR) and first-principles calculations combined with microkinetic methods. It is found that selective deposition on the low coordination edge sites of Pt nanoparticles is realized when using O3 as the coreactant at low temperature (150 °C), while the ALD reaction takes place only above 250 °C without selectivity when using O2 as the coreactant. Based on density functional theory calculations, the edge-selective growth of FeOx on Pt is attributed to energy barrier differences for ALD reactions taking place at the Pt(111), Pt(100), and edge sites. Moreover, reaction rate analysis indicates that the selectivity of FeOx ALD on Pt nanoparticles is temperature dependent and that a high temperature suppresses the selectivity between different sites, which is also confirmed by the FTIR results. |
Databáze: | OpenAIRE |
Externí odkaz: |