Modeling stem cell nucleus mechanics using confocal microscopy

Autor: Joshua Newberg, Gunes Uzer, Clare K. Fitzpatrick, Matthew Goelzer, Zeke Kennedy, Stefan Judex
Rok vydání: 2021
Předmět:
Zdroj: Biomech Model Mechanobiol
ISSN: 1617-7940
1617-7959
DOI: 10.1007/s10237-021-01513-w
Popis: Nuclear mechanics is emerging as a key component of stem cell function and differentiation. While changes in nuclear structure can be visually imaged with confocal microscopy, mechanical characterization of the nucleus and its sub-cellular components require specialized testing equipment. A computational model permitting cell-specific mechanical information directly from confocal and atomic force microscopy of cell nuclei would be of great value. Here, we developed a computational framework for generating finite element models of isolated cell nuclei from multiple confocal microscopy scans and simple atomic force microscopy (AFM) tests. Confocal imaging stacks of isolated mesenchymal stem cells (MSC) were converted into finite element models and siRNA-mediated LaminA/C depletion isolated chromatin and LaminA/C structures. Using AFM-measured experimental stiffness values, a set of conversion factors were determined for both chromatin and LaminA/C to map the voxel intensity of the original images to the element stiffness, allowing the prediction of nuclear stiffness in an additional set of other nuclei. The developed computational framework will identify the contribution of a multitude of sub-nuclear structures and predict global nuclear stiffness of multiple nuclei based on simple nuclear isolation protocols, confocal images and AFM tests.
Databáze: OpenAIRE