On normal modules
Autor: | Chillumuntala Jayaram, Ünsal Tekir, Suat Koç, Seçil Çeken |
---|---|
Přispěvatelé: | Jayaram C., Tekir Ü., Koç S., Çeken S. |
Rok vydání: | 2022 |
Předmět: |
Matematik
Commutative Rings and Algebras Multidisipliner Multidisciplinary Algebra and Number Theory MULTIDISCIPLINARY SCIENCES Logic Temel Bilimler Temel Bilimler (SCI) Doğa Bilimleri Genel Geometri ve Topoloji ÇOK DİSİPLİNLİ BİLİMLER MATHEMATICS NATURAL SCIENCES GENERAL Ayrık Matematik ve Kombinatorik Fizik Bilimleri Değişmeli Halkalar ve Cebirler MATEMATİK Natural Sciences (SCI) Physical Sciences Discrete Mathematics and Combinatorics Mantık Geometry and Topology Natural Sciences |
Zdroj: | Communications in Algebra. 51:1479-1491 |
ISSN: | 1532-4125 0092-7872 |
Popis: | Recall that a commutative ring R is said to be a normal ring if it is reduced and every two distinct minimal prime ideals are comaximal. A finitely generated reduced R-module M is said to be a normal module if every two distinct minimal prime submodules are comaximal. The concepts of normal modules and locally torsion free modules are different, whereas they are equal in theory of commutative rings. We give many properties and examples of normal modules, we use them to characterize locally torsion free modules and Baer modules. Also, we give the topological characterizations of normal modules. |
Databáze: | OpenAIRE |
Externí odkaz: |