Tracking of multiple people in crowds using laser range scanners

Autor: Bolircene Marc, Jean-Michel Auberlet, Ladji Adiaviakoye, Plainchault Patrick
Přispěvatelé: ESEO-GSII (GSII), ESEO-Tech, Université Bretagne Loire (UBL)-Université Bretagne Loire (UBL), Université Bretagne Loire (UBL), Laboratoire d'Ingéniérie des Systèmes Automatisés (LISA), Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Laboratoire Exploitation, Perception, Simulateurs et Simulations (IFSTTAR/COSYS/LEPSIS), Communauté Université Paris-Est-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: International Conference on Intelligent Sensors, Sensor Networks and Information Processing-IEEE ISSNIP
International Conference on Intelligent Sensors, Sensor Networks and Information Processing-IEEE ISSNIP, Apr 2014, SINGAPOUR, France. 7p, ⟨10.1109/ISSNIP.2014.6827668⟩
Popis: International Conference on Intelligent Sensors, Sensor Networks and Information Processing - IEEE ISSNIP, SINGAPOUR, SINGAPOUR, 21-/04/2014 - 24/04/2014; In everyday life, we can see amazing choreographies of movements of crowds of pedestrians. Pedestrians run into and avoid each other but do not seem to consciously cooperate. In this paper, we track a crowd of pedestrians in a large covered and cluttered area to understand their social behavior. Additionally, we try to analyze the characteristics of crowds of pedestrians such as traffic density, velocity, and trajectory. We introduce a stable feature extraction method based on accumulated distribution of successive laser frames. To isolate pedestrians, we propose a nonparametric method exploiting the Parzen windowing technique. We apply the new method of Rao-Blackwellized Monte Carlo data association to track a highly variable number of pedestrians. The algorithm is quantitatively evaluated through a social behavior experiment taking place in the lobby of a school. During this experiment, nearly 300 students are tracked.
Databáze: OpenAIRE