Sampling strategy and statistical analysis for radioactive waste characterization
Autor: | Nadia Perot, Dominique Carré, Ingmar Pointeau, Alexandre Le Cocguen, Anne Duhart-Barone, Hervé Lamotte |
---|---|
Přispěvatelé: | Laboratoire d'études et de modélisations des systèmes (LEMS), CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Service d'Etudes des Systèmes Innovants (SESI), Département Etude des Réacteurs (DER), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Laboratoire des Sciences de l'Information et de la Communication (LabSIC), Université Paris 13 (UP13)-Université Sorbonne Paris Cité (USPC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Modélisation des Transferts dans l'Environnement (LMTE), Service Mesures et modélisation des Transferts et des Accidents graves (SMTA), Département Technologie Nucléaire (DTN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Département Technologie Nucléaire (DTN) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
FOS: Computer and information sciences
Nuclear and High Energy Physics Factorial risk analysis 020209 energy FOS: Physical sciences Sample (statistics) 02 engineering and technology Drum 01 natural sciences Upper and lower bounds 010305 fluids & plasmas Methodology (stat.ME) statistical analysis 0103 physical sciences 0202 electrical engineering electronic engineering information engineering General Materials Science Safety Risk Reliability and Quality Process engineering Waste Management and Disposal Statistics - Methodology business.industry Mechanical Engineering Radioactive waste Sampling (statistics) Regression analysis sampling strategy radioactive waste characterisation Data set Nuclear Energy and Engineering Physics - Data Analysis Statistics and Probability Environmental science business Data Analysis Statistics and Probability (physics.data-an) [PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an] |
Zdroj: | Nuclear Engineering and Design Nuclear Engineering and Design, Elsevier, In press Nuclear Engineering and Design, inPress |
ISSN: | 0029-5493 1872-759X |
Popis: | International audience; This paper describes the methodology we have developed to define a sampling strategy adapted to operational constraints in order to characterize the dihydrogen flow rate of 2714 nuclear waste drums produced by radiolysis reaction of organic mixed with α-emitters. The objective was to perform few but relevant measurements. Thus, a sample of only 38 drums has been selected to be measured. Statistical analysis of drum measurement data of dihydrogen rate provided an estimation of the mean and the upper bound of the physical quantity of interest which gave a good convergence with global measurements from the ventilation system of the facility. Thereafter, performing a factorial data analysis has demonstrated the representativeness of the measurement data set and the sampling strategy assumption validity. Moreover, it provided information that has been used for a regression analysis to develop a linear prediction model of dihydrogen flow rate production for the waste drum characterization. |
Databáze: | OpenAIRE |
Externí odkaz: |