Permute and conjugate: the conjugacy problem in relatively hyperbolic groups

Autor: Andrew W. Sale, Yago Antolín
Rok vydání: 2016
Předmět:
Zdroj: Bulletin of the London Mathematical Society. 48:657-675
ISSN: 1469-2120
0024-6093
DOI: 10.1112/blms/bdw028
Popis: Modelled on efficient algorithms for solving the conjugacy problem in hyperbolic groups, we define and study the permutation conjugacy length function. This function estimates the length of a short conjugator between words $u$ and $v$, up to taking cyclic permutations. This function might be bounded by a constant, even in the case when the standard conjugacy length function is unbounded. We give applications to the complexity of the conjugacy problem, estimating conjugacy growth rates, and languages. Our main result states that for a relatively hyperbolic group, the permutation conjugacy length function is bounded by the permutation conjugacy length function of the parabolic subgroups.
18 pages, 8 figures
Databáze: OpenAIRE