Harnessing subcellular-resolved organ distribution of cationic copolymer-functionalized fluorescent nanodiamonds for optimal delivery of therapeutic siRNA to a xenografted tumor in mice

Autor: Zamira Díaz-Riascos, Patrick Georges, Sandra Claveau, Xavier Délen, Jean-Rémi Bertrand, Petr Cigler, Alexandre Papine, Marek Kindermann, François Treussart, Òscar Tirado Martínez, Ibane Abasolo Olaortua, Roser López-Alemany
Přispěvatelé: Laboratoire Lumière, Matière et Interfaces (LuMIn), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques (METSY), Institut Gustave Roussy (IGR)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Vectorologie et thérapeutiques anti-cancéreuses [Villejuif] (UMR 8203), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Centre National de la Recherche Scientifique (CNRS), Institut Gustave Roussy (IGR), Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB / CAS), Czech Academy of Sciences [Prague] (CAS), University of Chemistry and Technology Prague (UCT Prague), IMSTAR, IMSTAR S.A., Vall d’Hebron Research Institute (VHIR), Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III [Madrid] (ISC)-ministerio de ciencia e innovacion, Laboratoire Charles Fabry / Lasers, Laboratoire Charles Fabry (LCF), Institut d'Optique Graduate School (IOGS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut d'Investigació Biomèdica de Bellvitge [Barcelone] (IDIBELL)
Rok vydání: 2021
Předmět:
Biodistribution
Small interfering RNA
[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging
[SDV.CAN]Life Sciences [q-bio]/Cancer
02 engineering and technology
010402 general chemistry
01 natural sciences
Quantitative Biology - Quantitative Methods
Fluorescence
Nanodiamonds
Mice
[SDV.SP.MED]Life Sciences [q-bio]/Pharmaceutical sciences/Medication
In vivo
Neoplasms
Fluorescence microscope
Animals
General Materials Science
Tissue Distribution
RNA
Small Interfering

Nanodiamond
Tissues and Organs (q-bio.TO)
biodistribution
Quantitative Methods (q-bio.QM)
Oncogene
cationic copolymer
Chemistry
time-delayed epifluorescence
Quantitative Biology - Tissues and Organs
[CHIM.MATE]Chemical Sciences/Material chemistry
021001 nanoscience & nanotechnology
3. Good health
0104 chemical sciences
FOS: Biological sciences
Biophysics
Nanomedicine
fluorescent nanodiamond
0210 nano-technology
high-throughput quantifications
in vivo siRNA delivery
Zdroj: Nanoscale
Nanoscale, Royal Society of Chemistry, 2021, 13 (20), pp.9280-9292. ⟨10.1039/d1nr00146a⟩
ISSN: 2040-3364
2040-3372
DOI: 10.48550/arxiv.2101.05748
Popis: Diamond nanoparticles (nanodiamonds) can transport active drugs in cultured cells as well as in vivo. However, in the latter case, methods allowing to determine their bioavailability accurately are still lacking. Nanodiamond can be made fluorescent with a perfectly stable emission and a lifetime ten times longer than the one of tissue autofluorescence. Taking advantage of these properties, we present an automated quantification method of fluorescent nanodiamonds (FND) in histological sections of mouse organs and tumor, after systemic injection. We use a home-made time-delayed fluorescence microscope comprising a custom pulsed laser source synchronized on the master clock of a gated intensified array detector. This setup allows to obtain ultra-high-resolution images 120 Mpixels of whole mouse organs sections, with subcellular resolution and single-particle sensitivity. As a proof-of-principle experiment, we quantified the biodistribution and aggregation state of new cationic FNDs able to transport small interfering RNA inhibiting the oncogene responsible for Ewing sarcoma. Image analysis showed a low yield of nanodiamonds in the tumor after intravenous injection. Thus, for the in vivo efficacy assay we injected the nanomedicine into the tumor. We achieved a 28-fold inhibition of the oncogene. This method can readily be applied to other nanoemitters with $\approx$100 ns lifetime.
Comment: Nanoscale, Royal Society of Chemistry, 2021
Databáze: OpenAIRE