Frame Spectral Pairs and Exponential Bases

Autor: Azita Mayeli, Christina Frederick
Rok vydání: 2021
Předmět:
Zdroj: Journal of Fourier Analysis and Applications. 27
ISSN: 1531-5851
1069-5869
DOI: 10.1007/s00041-021-09872-9
Popis: Given a domain $$\varOmega \subset {\mathbb {R}}^d$$ with positive and finite Lebesgue measure and a discrete set $$\varLambda \subset {\mathbb {R}}^d$$ , we say that $$(\varOmega , \varLambda )$$ is a frame spectral pair if the set of exponential functions $${\mathcal {E}}(\varLambda ):=\{e^{2\pi i \lambda \cdot x}: \lambda \in \varLambda \}$$ is a frame for $$L^2(\varOmega )$$ . Special cases of frames include Riesz bases and orthogonal bases. In the finite setting $${\mathbb {Z}}_N^d$$ , $$d, N\ge 1$$ , a frame spectral pair can be similarly defined. In this paper we show how to construct and obtain new classes of frame spectral pairs in $${\mathbb {R}}^d$$ by “adding” a frame spectral pair in $${\mathbb {R}}^{d}$$ to a frame spectral pair in $${\mathbb {Z}}_N^d$$ . Our construction unifies the well-known examples of exponential frames for the union of cubes with equal volumes. We also remark on the link between the spectral property of a domain and sampling theory.
Databáze: OpenAIRE