A Mermin--Wagner theorem on Lorentzian triangulations with quantum spins

Autor: Anatoly Yambartsev, Yu. M. Suhov, Mark Kelbert
Rok vydání: 2012
Předmět:
Zdroj: Braz. J. Probab. Stat. 28, no. 4 (2014), 515-537
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
DOI: 10.48550/arxiv.1211.5446
Popis: We consider infinite random casual Lorentzian triangulations emerging in quantum gravity for critical values of parameters. With each vertex of the triangulation we associate a Hilbert space representing a bosonic particle moving in accordance with standard laws of Quantum Mechanics. The particles interact via two-body potentials decaying with the graph distance. A Mermin--Wagner type theorem is proven for infinite-volume reduced density matrices related to solutions to DLR equations in the Feynman--Kac (FK) representation.
Comment: 28 pages, 1 figure
Databáze: OpenAIRE