SIR epidemics and vaccination on random graphs with clustering
Autor: | Carolina Fransson, Pieter Trapman |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Poisson distribution
01 natural sciences Quantitative Biology::Other Communicable Diseases Models Biological Article Clustering 010305 fluids & plasmas Disease Outbreaks 03 medical and health sciences symbols.namesake 0103 physical sciences FOS: Mathematics Computer Graphics Quantitative Biology::Populations and Evolution Cluster Analysis Humans Computer Simulation Configuration model Cluster analysis 030304 developmental biology Mathematics Branching process Discrete mathematics Random graph 0303 health sciences Applied Mathematics Probability (math.PR) Vaccination Numerical Analysis Computer-Assisted Computer Science::Social and Information Networks Models Theoretical Agricultural and Biological Sciences (miscellaneous) Outcome (probability) Branching processes Modeling and Simulation symbols SIR epidemics Graph (abstract data type) Disease Susceptibility Epidemic model Basic reproduction number Mathematics - Probability |
Zdroj: | Journal of Mathematical Biology |
ISSN: | 1432-1416 0303-6812 |
Popis: | In this paper we consider Susceptible \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document}→ Infectious \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document}→ Recovered (SIR) epidemics on random graphs with clustering. To incorporate group structure of the underlying social network, we use a generalized version of the configuration model in which each node is a member of a specified number of triangles. SIR epidemics on this type of graph have earlier been investigated under the assumption of homogeneous infectivity and also under the assumption of Poisson transmission and recovery rates. We extend known results from literature by relaxing the assumption of homogeneous infectivity both in individual infectivity and between different kinds of neighbours. An important special case of the epidemic model analysed in this paper is epidemics in continuous time with arbitrary infectious period distribution. We use branching process approximations of the spread of the disease to provide expressions for the basic reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document}R0, the probability of a major outbreak and the expected final size. In addition, the impact of random vaccination with a perfect vaccine on the final outcome of the epidemic is investigated. We find that, for this particular model, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document}R0 equals the perfect vaccine-associated reproduction number. Generalizations to groups larger than three are discussed briefly. |
Databáze: | OpenAIRE |
Externí odkaz: |