Microwave-engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms

Autor: P. Scholl, H. J. Williams, G. Bornet, F. Wallner, D. Barredo, L. Henriet, A. Signoles, C. Hainaut, T. Franz, S. Geier, A. Tebben, A. Salzinger, G. Zürn, T. Lahaye, M. Weidemüller, A. Browaeys
Přispěvatelé: European Commission, Agence Nationale de la Recherche (France), German Research Foundation, Alexander von Humboldt Foundation, University of Heidelberg, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Research and Art Baden-Württemberg
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Phys. Rev. X. Quantum
Digital.CSIC. Repositorio Institucional del CSIC
instname
ISSN: 3909-0094
Popis: We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in one-dimensional (1D) and two-dimensional (2D) arrays of optical tweezers. As illustrations, we apply this engineering to two iconic situations in spin physics: the Heisenberg model in square arrays and spin transport in 1D. We first benchmark the Hamiltonian engineering for two atoms and then demonstrate the freezing of the magnetization on an initially magnetized 2D array. Finally, we explore the dynamics of 1D domain-wall systems with both periodic and open boundary conditions. We systematically compare our data with numerical simulations and assess the residual limitations of the technique as well as routes for improvement. The geometrical versatility of the platform, combined with the flexibility of the simulated Hamiltonians, opens up exciting prospects in the fields of quantum simulation, quantum information processing, and quantum sensing.
This work is supported by the European Union (EU) Horizon 2020 research and innovation program “Programmable Atomic Large-Scale Quantum Simulation” (PASQuanS) under Grant Agreement No. 817482, the Agence National de la Recherche (ANR, project RYBOTIN), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster), within the Collaborative Research Center SFB1225 (ISOQUANT), the DFG Priority Program 1929 “GiRyd” (DFG WE2661/12-1), and by the Heidelberg Center for Quantum Dynamics. C.H. acknowledges funding from the Alexander von Humboldt foundation, T.F. from a graduate scholarship of the Heidelberg University (LGFG), and D.B. from the Ramón y Cajal program (RYC2018-025348-I). F.W. is partially supported by the Erasmus+ program of the EU. We also acknowledge support by the state of Baden-Württemberg through Baden-Württemberg high performance computing (bwHPC) and the DFG through Grant No. INST 40/575-1 FUGG (JUSTUS 2 cluster).
Databáze: OpenAIRE