Experimental warming differentially influences the vulnerability of phototrophic and heterotrophic periphytic communities to copper toxicity

Autor: Stéphane Pesce, Anne-Sophie Lambert, Soizic Morin, Arnaud Foulquier, Marina Coquery, Aymeric Dabrin
Přispěvatelé: RiverLy (UR Riverly), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Ecosystèmes aquatiques et changements globaux (UR EABX), Laboratoire d'Ecologie Alpine (LECA ), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Microbiology (medical)
ENZYME
enzymes
lcsh:QR1-502
0211 other engineering and technologies
Heterotroph
02 engineering and technology
extracellular enzymatic activities
010501 environmental sciences
Biology
01 natural sciences
Microbiology
Freshwater ecosystem
lcsh:Microbiology
biofilm
microbial ecotoxicology
medicine
14. Life underwater
Periphyton
freshwater
Original Research
0105 earth and related environmental sciences
021110 strategic
defence & security studies

photosynthesis
TOXICITE
Phototroph
Ecology
Aquatic ecosystem
pollution-induced community tolerance (PICT)
Copper toxicity
CUIVRE
toxicity
medicine.disease
6. Clean water
bioaccumulation
multi-stress
Microbial population biology
13. Climate action
copper
ECOTOXICOLOGIE MICROBIENNE
[SDE]Environmental Sciences
biofilms
Microcosm
EAU DOUCE
Zdroj: Frontiers in Microbiology
Frontiers in Microbiology, Frontiers Media, 2018, 9, pp.1424-1438. ⟨10.3389/fmicb.2018.01424⟩
Frontiers in Microbiology, Vol 9 (2018)
ISSN: 1664-302X
DOI: 10.3389/fmicb.2018.01424⟩
Popis: International audience; Aquatic ecosystems are generally subjected to multiple perturbations due to simultaneous or successive combinations of various natural and anthropogenic environmental pressures. To better assess and predict the resulting ecological consequences, increasing attention should be given to the accumulation of stresses on freshwater ecosystems and its effects on the vulnerability of aquatic organisms, including microbial communities, which play crucial functional roles. Here we used a microcosm study to assess the influence of an experimental warming on the vulnerability of phototrophic and heterotrophic periphytic communities to acute and chronic copper (Cu) toxicity. Natural periphytic communities were submitted for 4 weeks to three different temperatures (18, 23, and 28°C) in microcosms contaminated (at about 15 µg L-1) or not with Cu. The vulnerability of both phototrophic and heterotrophic microbial communities to subsequent acute Cu stress was then assessed by measuring their levels of sensitivity to Cu from bioassays targeting phototrophic (photosynthetic activity) and heterotrophic (β-glucosidase and leucine aminopeptidase extracellular enzymatic activities) microbial functions. We postulated that both the increase in temperature and the chronic Cu exposure would modify microbial community structure, thus leading to changes in the capacity of phototrophic and heterotrophic communities to tolerate subsequent acute exposure to Cu. Our results demonstrated that the influence of temperature on the vulnerability of phototrophic and heterotrophic microbial communities to Cu toxicity can vary greatly according to function studied. These findings emphasize the importance of considering different functional compartments and different functional descriptors to better assess the vulnerability of periphyton to multiple stresses and predict the risks induced by multiple stressors for ecosystem balance and functioning.
Databáze: OpenAIRE