Asymptotic states and $S$-matrix operator in de Sitter ambient space formalism
Autor: | Takook, M. V., Gazeau, J. P., Huguet, E. |
---|---|
Přispěvatelé: | AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) |
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
High Energy Physics - Theory
space: de Sitter field theory: de Sitter [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] Hilbert space FOS: Physical sciences General Relativity and Quantum Cosmology (gr-qc) one-particle General Relativity and Quantum Cosmology horizon field theory: scalar Fock space High Energy Physics - Theory (hep-th) space-time adiabatic quantum state [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] Minkowski operator: algebra group: de Sitter |
Popis: | Within the de Sitter ambient space framework, the two different bases of the one-particle Hilbert space of the de Sitter group algebra are presented for the scalar case. Using field operator algebra and its Fock space construction in this formalism, we discuss the existence of asymptotic states in de Sitter QFT under an extension of the adiabatic hypothesis and prove the Fock space completeness theorem for the massive scalar field. We define the quantum state in the limit of future and past infinity on the Sitter hyperboloid in an observer-independent way. These results allow us to examine the existence of the $S$-matrix operator for de Sitter QFT in ambient space formalism, a question usually obscure in spacetime with a cosmological event horizon for a specific observer. Some similarities and differences between QFT in Minkowski and de Sitter spaces are discussed. 21 pages |
Databáze: | OpenAIRE |
Externí odkaz: |