A self-decoupled 32-channel receive array for human-brain MRI at 10.5 T
Autor: | Edward J. Auerbach, Nader Tavaf, Jerahmie Radder, Andrea Grant, Steve Jungst, Russell L. Lagore, Pierre-Francois Van de Moortele, Shajan Gunamony, Kamil Ugurbil, Steen Moeller, Gregor Adriany |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Channel (digital image) business.industry Phantoms Imaging Transmitter Acceleration Brain Field strength Equipment Design Signal-To-Noise Ratio Noise (electronics) Magnetic Resonance Imaging Imaging phantom Article 030218 nuclear medicine & medical imaging Loop (topology) 03 medical and health sciences 0302 clinical medicine Optics Humans Radiology Nuclear Medicine and imaging Parallel imaging business 030217 neurology & neurosurgery |
Zdroj: | Magn Reson Med |
ISSN: | 1522-2594 |
Popis: | PURPOSE: Receive array layout, noise mitigation, and B(0) field strength are crucial contributors to SNR and parallel-imaging performance. Here, we investigate SNR and parallel-imaging gains at 10.5 T compared with 7 T using 32-channel receive arrays at both fields. METHODS: A self-decoupled 32-channel receive array for human brain imaging at 10.5 T (10.5T-32Rx), consisting of 31 loops and one cloverleaf element, was co-designed and built in tandem with a 16-channel dual-row loop transmitter. Novel receive array design and self-decoupling techniques were implemented. Parallel imaging performance, in terms of SNR and noise amplification (g-factor), of the 10.5T-32Rx was compared with the performance of an industry- standard 32- channel receiver at 7 T (7T-32Rx) through experimental phantom measurements. RESULTS: Compared with the 7T-32Rx, the 10.5T-32Rx provided 1.46 times the central SNR and 2.08 times the peripheral SNR. Minimum inverse g-factor value of the 10.5T-32Rx (min[1/g] = 0.56) was 51% higher than that of the 7T-32Rx (min[1/g] = 0.37) with R = 4 × 4 2D acceleration, resulting in significantly enhanced parallel-imaging performance at 10.5 T compared with 7 T. The g-factor values of 10.5 T-32 Rx were on par with those of a 64-channel receiver at 7 T (eg, 1.8 vs 1.9, respectively, with R = 4 × 4 axial acceleration). CONCLUSION: Experimental measurements demonstrated effective self-decoupling of the receive array as well as substantial gains in SNR and parallel-imaging performance at 10.5 T compared with 7 T. |
Databáze: | OpenAIRE |
Externí odkaz: |