Macroscopic loops in the loop $O(n)$ model at Nienhuis' critical point

Autor: Yinon Spinka, Alexander Glazman, Hugo Duminil-Copin, Ron Peled
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Journal of the European Mathematical Society
Popis: The loop $O(n)$ model is a model for a random collection of non-intersecting loops on the hexagonal lattice, which is believed to be in the same universality class as the spin $O(n)$ model. It has been predicted by Nienhuis that for $0\le n\le 2$ the loop $O(n)$ model exhibits a phase transition at a critical parameter $x_c(n)=\tfrac{1}{\sqrt{2+\sqrt{2-n}}}$. For $0
Comment: 39 pages, 9 figures; v2 - Theorem 2 now includes uniqueness of the Gibbs measure; v3 - modified statement of Theorem 2, only translation-invariant Gibbs measures are considered, edits in the introduction, to appear in the Journal of the EMS
Databáze: OpenAIRE