Relative dispersion of particle pairs in turbulent channel flow
Autor: | Nickolas Stelzenmuller, Ivana Vinkovic, Mickaël Bourgoin, Nicolas Mordant, Juan Ignacio Polanco |
---|---|
Přispěvatelé: | Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Écoulements Géophysiques et Industriels [Grenoble] (LEGI ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2018 |
Předmět: |
pair dispersion
media_common.quotation_subject Direct numerical simulation FOS: Physical sciences channel flow 01 natural sciences Asymmetry 010305 fluids & plasmas Physics::Fluid Dynamics 0103 physical sciences [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] 010306 general physics media_common Fluid Flow and Transfer Processes Physics Homogeneous isotropic turbulence Turbulence [SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment Mechanical Engineering Isotropy Fluid Dynamics (physics.flu-dyn) Physics - Fluid Dynamics Mechanics Condensed Matter Physics Open-channel flow Lagrangian turbulence Cascade direct numerical simulation inhomogeneous turbulence Vector field |
Zdroj: | International Journal of Heat and Fluid Flow International Journal of Heat and Fluid Flow, Elsevier, 2018, 71, pp.231-245. ⟨10.1016/j.ijheatfluidflow.2018.04.007⟩ International Journal of Heat and Fluid Flow, 2018, 71, pp.231-245. ⟨10.1016/j.ijheatfluidflow.2018.04.007⟩ |
ISSN: | 0142-727X |
DOI: | 10.1016/j.ijheatfluidflow.2018.04.007 |
Popis: | Lagrangian tracking of particle pairs is of fundamental interest in a large number of environmental applications dealing with contaminant dispersion and passive scalar mixing. The aim of the present study is to extend the observations available in the literature on relative dispersion of fluid particle pairs to wall-bounded turbulent flows, by means of particle pair tracking in direct numerical simulations (DNS) of a turbulent channel flow. The mean-square change of separation between particle pairs follows a clear ballistic regime at short times for all wall distances. The Eulerian structure functions governing this short-time separation are characterised in the channel, and allow to define a characteristic time scale for the ballistic regime, as well as a suitable normalisation of the mean-square separation leading to an overall collapse for different wall distances. Through fluid particle pair tracking backwards and forwards in time, the temporal asymmetry of relative dispersion is illustrated. At short times, this asymmetry is linked to the irreversibility of turbulence, as in previous studies on homogeneous isotropic flows. The influence of the initial separation (distance and orientation) as well as the influence of mean shear are addressed. By decomposing the mean-square separation into the dispersion by the fluctuating velocity field and by the average velocity, it is shown that the influence of mean shear becomes important at early stages of dispersion close to the wall but also near the channel centre. The relative dispersion tensor $\Delta_{ij}$ is also presented and particularly the sign and time evolution of the cross-term $\Delta_{xy}$ are discussed. Finally, a ballistic cascade model previously proposed for homogeneous isotropic turbulence is adapted here to turbulent channel flows. Preliminary results are given and compared to the DNS. Comment: Accepted for publication in International Journal of Heat and Fluid Flow (TSFP10 Special Issue), 18 pages, 16 figures |
Databáze: | OpenAIRE |
Externí odkaz: |